EDP Sciences logo
Open Access
Ann Toxicol Anal
Volume 24, Numéro 3, 2012
Page(s) 153 - 158
DOI https://doi.org/10.1051/ata/2012019
Publié en ligne 12 décembre 2012
  1. Jackson TA, Langston WJ, Bebianno MJ. Metal metabolism in aquatic environments : Chapman et Hall. 1998. [Google Scholar]
  2. Mason RP, Fitzgerald WF, Morel FM. The biochemical cycling of elementary mercury : Anthropogenic influences. Geochimica Cosmochimica Acta. 1994; 58 : 3191–3198. [CrossRef] [Google Scholar]
  3. Stumm W, Morgan JJ. Aquatic Chemistry. Chemical equilibria and rates in natural water. 3rd edition. New York, USA : John Wiley & Sons, 1996. [Google Scholar]
  4. Meili M. Mercury In Lakes And Rivers. Metal Ions In Biological Systems. 1997; 34 : 21–51. [Google Scholar]
  5. Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Gunnar Hovsenius G, Hakanson L, Iverfeldt A, Meili M, Timm B. Mercury in the swedish environment - Recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution. 1991; 55. [Google Scholar]
  6. Graydon JA, St Louis VL, Hintelmann H, Lindberg SE, Sandilands KA, Rudd JW, Kelly CA, Hall BD, Mowat LD. Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol. 2008; 42 : 8345–8351. [CrossRef] [PubMed] [Google Scholar]
  7. Grigal DF. Inputs and outputs of mercury from terrestrial watersheds. a review. Environmental Research. 2002; 10 : 1–39. [Google Scholar]
  8. Driscoll CT, Han YJ, Chen CY, Evers DC, Fallon Lambert K, Holsen TM, Neil C, Kamman NC, Munson RK. Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States. BioScience. 2007; 57 : 17–28. [CrossRef] [Google Scholar]
  9. Amyot M, Gill G, Morel FM. Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environ Sci Technol. 1997; 31 : 3606–3611. [CrossRef] [Google Scholar]
  10. Compeau GC, Bartha R. Sulfate-Reducing Bacteria : Principal Methylators of Mercury in Anoxic Estuarine Sediment. Applied and Environmental Microbiology. 1985; 50 : 498–502. [Google Scholar]
  11. Warner KA, Roden EE, Bonzongo JC. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol. 2003; 37 : 2159–2165. [CrossRef] [PubMed] [Google Scholar]
  12. Warner KA, Bonzongo JC, Roden EE, Ward GM, Green AC, Chaubey I, Lyons WB, Arrington DA. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin USA. Sci Total Environ. 2005; 347 : 187–207. [CrossRef] [PubMed] [Google Scholar]
  13. Ribeiro Guevara S, Queimalinos CP, Dieguez Mdel C, Arribere M. Methylmercury production in the water column of an ultraoligotrophic lake of Northern Patagonia, Argentina. Chemosphere. 2008; 72 : 578–585. [CrossRef] [PubMed] [Google Scholar]
  14. Organisation Mondiale de la Santé (OMS). 2008. [Google Scholar]
  15. Poissant L, Dommergue A, Ferrari CP. Mercury as a global pollutant. In J. Phys. IV, EDP Sciences Publishers. 2002; 143–160. [Google Scholar]
  16. Lindberg SE, Stratton WJ. Atmospheric mercury speciation : concentrations and behaviour of reactive gaseous mercury in ambient air. Environmental Science and Technology. 1998; 32 : 49–57. [CrossRef] [Google Scholar]
  17. UNEP, Global Mercury Assessment Report, UNEP (United Nations Environment Programme). Genève. 2002. [Google Scholar]
  18. Nriagu JO. A global assessment of natural sources of atmospheric trace metals. Nature. 1989; 338 : 47–49. [CrossRef] [Google Scholar]
  19. Selin NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaeglé L et al. Chemical cycling and deposition of atmospheric mercury : Global constraints from observations. J. Geophys. Res. 2007; 112 : 02308. [Google Scholar]
  20. Schroeder WH, Munthe J. Atmospheric mercury - An overview. Atmospheric Environment. 1998; 32 : 809–822. [CrossRef] [Google Scholar]
  21. Cossa D, Sanjuan J, Cloud J, Stockwell PB, Corns WT. Automated mercury determination in waters. Water, Air and Soil Pollution, 1995; 80 : 1279–1284. [CrossRef] [Google Scholar]
  22. ISO/CEI 17025, general requirements for the competence of testing and calibration laboratories, International Organization for Standardization (ISO), Geneva : 2005. [Google Scholar]
  23. NF T 90-210, Qualité de l’eau. Protocole d’évaluation initiale des performances d’une méthode dans un laboratoire. Association Française de Normalisation (AFNOR), Paris : 2009. [Google Scholar]