Open Access
Numéro
Ann Toxicol Anal
Volume 25, Numéro 4, 2013
Page(s) 165 - 168
DOI https://doi.org/10.1051/ata/2014001
Publié en ligne 26 mars 2014
  1. Gleiz J, Beile A, Peters T. (+/-)-kavain inhibits the veratridine – and KCl – induced increase in intracellular Ca2+ and glutamate release of rat cerebro-cortical synaptosomes. Neuropharmacology. 1996; 35: 179–186. [CrossRef] [PubMed] [Google Scholar]
  2. Norton A, Ruze P. Kava dermopathy. J Am Acad Dermatol. 1994; 31: 89–97. [CrossRef] [PubMed] [Google Scholar]
  3. Russmann S, Barguil Y, Cabalion P, Kritsanida M, Duhet D, Lauterburg BH. Hepatic injury due to traditional aqueous extracts of kava root in New Caledonia. Eur J Gastroenterol Hepatol. 2003; 15: 1033–1036. [CrossRef] [PubMed] [Google Scholar]
  4. Clough A, Wang Z, Bailie R, Burns C, Curie B. Case-control study of the association between kava use and ischaemic heart disease in Aboriginal communities in eastern Arnhem Land (Northern Territory) Australia. J Epidemiol Community Health. 2004; 58: 140–141. [CrossRef] [PubMed] [Google Scholar]
  5. Frye RF, Matzke GR, Adedoyin A, Porter JA, Branch RA. Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther. 1997; 62: 365–376. [CrossRef] [PubMed] [Google Scholar]
  6. Russmann S, Lauterburg B, Barguil Y, Cabalion P. Traditional aqueous kava extracts inhibit cytochrome P4501A2 in humans: Protective effect against environmental carcinogens? Clin Pharmacol Ther. 2005; 77: 453–454. [CrossRef] [PubMed] [Google Scholar]
  7. Barguil Y, Mandeau A, Collignon J, Beata K, Duhet D. Identification de kavalactones dans le sang, la salive et l’urine par CLHP/BD, approche cinétique et application à la toxicologie clinique et médico-légale [abstract]. Annal Toxicol Anal. 2001; 13: 139. [Google Scholar]
  8. Tarbah F, Barguil Y, Müller C, Rickert A, Weinmann W, Nour M, Kintz P, Daldrup T. Chromatographic hair analysis for natural kavalactones and their metabolites. A preliminary study. Annal Toxicol Anal. 2013; 25: 109–119. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Bruch-Gerharz D, Schnorr O, Suschek C, Beck KF, Pfeilschifter J, et al. Arginase 1 overexpression in psoriasis: limitation of inducible nitric oxide synthase activity as a molecular mechanism for keratinocyte hyperproliferation. Am J Pathol. 2003; 162: 203–211. [CrossRef] [PubMed] [Google Scholar]
  10. Henson SE, Nichols TC, Holers VM, Karp DR. The ectoenzyme γ-glutamyl transpeptidase regulates antiproliferative effects of S-nitrosoglutathione on human T and B lymphocytes. The JI. 1999; 163: 1845–1852. [Google Scholar]
  11. Kwon DJ, Mi Ju S, Youn GS, Choi SY, Park J. Suppression of iNOS and COX-2 expression by flafokawain A via blockade of NF-κB and AP-1 activation in RAW 264.7 macrophages. Food Chem Toxicol. 2013; 58: 479–486. [CrossRef] [PubMed] [Google Scholar]
  12. Dudzinski D, Michel T. The vascular biology of nitric oxide and nitric oxide synthases. In: Hemostasis and Thrombosis. Basic principles and clinical practice. Philadelphia: Lippincott Williams & Wilkins 2006; 653–665. [Google Scholar]