Open Access
Numéro
Ann Toxicol Anal
Volume 23, Numéro 4, 2011
Page(s) 157 - 167
DOI https://doi.org/10.1051/ata/2011132
Publié en ligne 12 décembre 2011
  1. Annesi-Maesano I, Daw W. Air pollution and the lung: epidemiological approach. Med Sci. 2006; 22: 589–594. [Google Scholar]
  2. Senlin L, Zhenkun Y, Xiiaohui C, Mighong W, Guoying S. The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM2.5) in Shanghai atmosphere. Atm Environ. 2008; 42: 7205–7214. [CrossRef] [Google Scholar]
  3. Cohen A, Anderson R, Ostro B, Pandey KD, Krzyzanowski M, Künzli N. Urban ambient air pollution. In: Ezzati M, Lopea AD, Rogers A, Murray CJL (Coordintors). Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. Geneva: WHO, 2004: 1353–433. [Google Scholar]
  4. United Nations, Department of Economic and Social Affairs (population division). World Urbanization Prospects: the 2003 Revision. New York: Population Division of the Department of Economic and Social Affairs of the United Nations Secretary, 2004. [Google Scholar]
  5. Kouassi KS, Billet S, Garçon G, Verdin A, Diouf A, Cazier F, Diaman J, Courcot D, Shirali P. Oxydative damage induced in A549 cells by physicaly and chemically characterized air particulate matter (PM2.5) collected in Abidjan Côte d’Ivoire. J Appl Toxicol. 2010; 30: 310–320. [PubMed] [Google Scholar]
  6. WHO. Preventing disease through healthy environments: Towards an estimate of environmental burden of disease. Prüss-Usten A and Corvalan C, Geneva: World Health Organization, 2006. [Google Scholar]
  7. Palmgren F, Wahlin P, Loft S. The pollution of air with Particulates in Copenhagen, Ministry of the Environment, Copenhagen (in Danish) 2003. [Google Scholar]
  8. Osornio-Vargas AR, Bonner JC, Alfaro-Moreno E, Martinez L, Garçia-Cuellar C, Ponce-de-Leon Rosales S, Miranda J, Rosas I. Proinflammatory and cytotoxic effects of Mexico city air pollution paticulate size and composition. Environ Health Perspect. 2003; 111: 1289–1293 [CrossRef] [PubMed] [Google Scholar]
  9. Vinitketkumnuen U, Kalayanamitra K, Chewonarin T, Kamens R. Particulate matter, PM10 & PM2.5 levels, and airborne mutagenicity in Chiang Mai, Thailand. Mutat Res. 2002; 519: 121–131. [CrossRef] [Google Scholar]
  10. Garcon G, Dagher Z, Zerimech F, Ledoux F, Courcot D, Aboukais A, Puskaric E, Shirali P. Dunkerque city air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicol In Vitro. 2006; 20: 519–528. [CrossRef] [PubMed] [Google Scholar]
  11. Billet S, Garçon G, Dagher Z, Verdin A, Ledoux F, Cazier F, Courcot D, Aboukaïs A, Shirali P. Ambient particulate matter (PM2.5): Physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ Res. 2007; 105: 212–223. [CrossRef] [PubMed] [Google Scholar]
  12. Fubini B, Hubbard A. Reactive oxygen species (ROS) and reaction nitrogen species (RNS) generation by silica in inflammation and fibrosis. Radic Biol Med. 2003; 34: 1507–1516. [CrossRef] [Google Scholar]
  13. Diouf A, Garçon G, Diop Y, Ndiaye B, Thiaw C, Fall M, Kane-Barry O, Bâ D, Haguenoer JM, Shirali P. Environmental lead exposure and its relationship to traffic density among Senegalese children: a cross-sectional study. Hum Exp Toxicol. 2006; 25: 637–644. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. Banque Mondiale. Initiative sur la qualité de l’air dans les villes de l’Afrique sub-saharienne. Rapport d’avancement 1998–2002, 2003. [Google Scholar]
  15. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973; 51: 1417–1423. [PubMed] [Google Scholar]
  16. Dagher Z, Garçon G, Gosset P, Ledoux F, Surpateanu G, Courcot D, Aboukaïs A, Puskaric E, Shirali P. Pro-inflammatory effects of Dunkerque city air pollutio particulate matter 2.5 in human epithelial lung cells (L132) in culture. J Appl Toxicol. 2005; 25: 166–175. [CrossRef] [PubMed] [Google Scholar]
  17. Shirali P, Gosset P, Marez T, Hachimi A, Muller JF, Haguenoer JM. Cytotoxicity evaluation of hematite (Fe2O3), benzo(a)pyrene and pyrene and analysis of particles by laser microprobe mass analyser (in vitro). Cell Biol Toxicol. 1995; 11: 215. [Google Scholar]
  18. Brunekreef B, Holgate S. Air pollution and health. Lancet. 2002; 360: 1233–1242. [CrossRef] [PubMed] [Google Scholar]
  19. PopeCA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004; 109: 71–77. [CrossRef] [PubMed] [Google Scholar]
  20. Harrison RM, Yin J. Particulate matter in the atmosphere: which particle properties are important for its effect on health. Sci Total Environ. 2000; 248: 85–101. [CrossRef] [Google Scholar]
  21. Oh SM, Kim HR, Park YJ, Lee SY, Chung KH. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutat Res. 2011;723:142–151. [PubMed] [Google Scholar]
  22. Khoder MI. Atmospheric conversion of sulfur dioxide to particulate sulphate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosph. 2002; 49: 675–684. [CrossRef] [Google Scholar]
  23. Khan MF, Shirasuna Y, Hirano K, Masunaga S. Characterization of PM2.5, PM2.5−10 and PM>10 in ambient air, Yokohama, Japan. Atm Res. 2010; 96: 159–172. [CrossRef] [Google Scholar]
  24. Finlayson-Pitts BJ, Pitts J. Analytical methods and typical atmospheric concentrations for gases and particles, in chemistry of the upper and lower atmosphere. San Diego: Academic Press, 2000: 547–656. [Google Scholar]
  25. ANMS: Agence Nationale de la Météorologie du Sénégal, 2008. [Google Scholar]
  26. Cerna M. Mutagenicity monitoring of airborne particulate matter PM10 in the Czech Republic. Mutat Res. 1999; 444: 373–386. [PubMed] [Google Scholar]
  27. Mill NL, Tornqxist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, Boon N, Donaldson K, Sandstrom T, Blomberg A, Newby DE. Ischemic and thrombotic effect of dilute diesel exhaust inhalation in men with coronary heart disease. New Engl J Med. 2007; 357 :1075–1082. [CrossRef] [Google Scholar]
  28. Shao L, Shi Z, Jones T, Li J, Whittaker A, BeruBe K. Bioreactivity of particulate matter in Beijing air: results from plasmid DNA assay. Sci Total Environ. 2006; 367: 261–272. [CrossRef] [PubMed] [Google Scholar]
  29. Garçon G, Gosset P, Maunit B, Casset A, Hannothiaux MH, Müller JF, Shirali P. Mécanismes cellulaires de la synergie d’action de polluants atmosphériques (Fe2O3 et HPA) dans l’apparition de cancer broncho-pulmonaire. Rev Fr Lab. 2003; 349: 59–68. [Google Scholar]
  30. Vakharia D, Liu N, Pause R, Fasco M, Bessette E, Zhang QY, Kaminsky LS. Effect of metals on polycyclic aromatic hydrocarbon induction of CYP1A1 and CYP1A2 in human hepatocyte cultures. Toxicol Appl Pharm. 2001; 170: 93–103. [CrossRef] [Google Scholar]
  31. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995; 30: 445–600 [CrossRef] [PubMed] [Google Scholar]
  32. Cohen AJ, Ross Anderson H, Ostro B. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A. 2005; 68: 1301–1307. [CrossRef] [PubMed] [Google Scholar]
  33. McNeilly JD, Heal M, Beverland I, Howe A, Gibson M, Hibbs L, MacNee W, Donaldson K. Soluble transition metals cause the pro-inflammatory effects of weldig fumes in vitro. Toxicol Appl Pharm. 2004; 196: 95–107. [CrossRef] [Google Scholar]