EDP Sciences logo
Open Access
Ann Toxicol Anal
Volume 25, Numéro 2, 2013
Page(s) 63 - 70
DOI https://doi.org/10.1051/ata/2013039
Publié en ligne 17 septembre 2013
  1. Colosio C, Moretto A. Pesticides International Encyclopedia of Public Health 2008, 59–66. [Google Scholar]
  2. McKellar Q, Benchaoui H. Avermectins and milbemycins. J Vet Phamacol Ther. 1996; 19: 331–351. [CrossRef] [Google Scholar]
  3. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. 1979; 15: 361–367. [CrossRef] [PubMed] [Google Scholar]
  4. Shoop W, Mrozik H, Fisher M. Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol. 1995; 59: 139–156. [CrossRef] [PubMed] [Google Scholar]
  5. Hernando MD, Suarez-Barcena JM, Bueno MJM, Garcia-Reyes JF, Fernandez-Alba AR. Fast separation liquid chromatography–tandem mass spectrometry for the confirmation and quantitative analysis of avermectin residues in food. J Chromatogr A. 2007; 1155: 62–73. [CrossRef] [PubMed] [Google Scholar]
  6. Danaher M. Review of methodology for the determination of macrocyclic lactone residues in biological matrices. J Chromatogr B. 2006; 844: 175–203. [CrossRef] [Google Scholar]
  7. Castanha Zanoli JC, Maioli MA, Medeiros HCD, Mingatto FE. Abamectin affects the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Toxicol In Vitro. 2012; 26: 51–56. [CrossRef] [PubMed] [Google Scholar]
  8. Campbell WC, Fisher MH, Stapley EO, Albers-Schonberg G, Jacob TA. Ivermectin: a potent antiparasitic agent. Science. 1983; 221: 823–828. [CrossRef] [PubMed] [Google Scholar]
  9. Kita K, Shiomi K, Omura S. Advances in drug discovery and biochemical studies. Trends in Parasitology. 2007; 23: 223–229. [CrossRef] [PubMed] [Google Scholar]
  10. Horvat AJM, Petrovic M, Babic S, Pavlovic DM, Asąperger D, Pelko S, Mance AD, Kas telan-Macan M. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trends Anal Chem. 2012; 31: 61–84. [CrossRef] [Google Scholar]
  11. Yoon YJ, Kim ES, Hwang YS, Cho CY. Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Microbiol Biotechnol. 2004; 63: 626–634. [CrossRef] [PubMed] [Google Scholar]
  12. Valenzuela AI, Redondo MJ, Pico Y, Font G. Determination of abamectin in citrus fruits by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2000; 871: 57–65. [CrossRef] [PubMed] [Google Scholar]
  13. Turnipseed SB, Roybal JE, Andersen WC, Kuck LR. Analysis of avermectin and moxidectin residues in milk by liquid chromatography–tandem mass spectrometry using an atmospheric pressure chemical ionization/atmospheric pressure photoionization source. Anal Chim Acta. 2005; 529: 159–165. [CrossRef] [Google Scholar]
  14. Pozo OJ, Marin JM, Sancho JV, Hernandez F. Determination of abamectin and azadirachtin residues in orange samples by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A. 2003; 992: 133–140. [CrossRef] [PubMed] [Google Scholar]
  15. Kolar L, Kuzner J, Erzen NK. Determination of abamectin and doramectin in sheep faeces using HPLC with fluorescence detection. Biomed Chromatogr. 2004; 8: 507–511. [Google Scholar]
  16. Chou HK, Lai CY, Chen T, Yen GC. A multiresidue method for the determination of abamectin, doramectin, moxidectin, ivermectin, milbemectin A3, and milbemectin A4 residues in bovine muscle using HPLC with fluorescence detection. J Food Drug Anal. 2004; 12(2): 146–153. [Google Scholar]
  17. Grimalt S, Pozo ÓJ, Marín JM, Sancho JV, Hernández F. Evaluation of different quantitative approaches for the determination of noneasily ionizable molecules by different atmospheric pressure interfaces used in liquid chromatography-tandem mass spectrometry: abamectin as case of study. J Am Soc Mass Spectrom. 2005; 16: 1619–1630. [CrossRef] [PubMed] [Google Scholar]
  18. Sheridan R, Desjardins L. Determination of abamectin, doramectin, emamectin, eprinomectin, ivermectin, and moxidectin in milk by liquid chromatography–electrospray tandem mass spectrometry. J AOAC Int. 2006; 89: 1088–1094. [PubMed] [Google Scholar]
  19. Rübensam G, Barreto F, Barcellos Hoff R, Mara Pizzolato T. Determination of avermectin and milbemycin residues in bovine muscle by liquid chromatography-tandem mass spectrometry and fluorescence detection using solvent extraction and low temperature cleanup. Food Control. 2013; 29: 55–60. [CrossRef] [Google Scholar]
  20. Ali MS, Sun T, McLeroy GE, Phillippo E. Confirmation of eprinomectin, moxidectin, abamectin, doramectin, and ivermectin in beef liver by liquid chromatography/positive ion atmospheric chemical ionization mass spectrometry. J AOAC Int. 2000; 83(1): 39–52. [PubMed] [Google Scholar]
  21. OECD. OECD Test Guideline for testing of chemicals, Section 4: Health Effects, OECD. Guideline 407, Repeated Dose 28-Day Oral Toxicity Study in Rodents 2003. [Google Scholar]
  22. Elbetieha A, Isa Daas S. Assessment of antifertility activities of ABM pesticide in male rats. Ecotoxicol Environm Safety. 2003; 55(3): 307–313. [CrossRef] [Google Scholar]
  23. Cometa MF, Buratti FM, Fortuna S, Lorenzini P, Volpe MT, Parisi L, Testai E, Meneguz A. Cholinesterase inhibition and alterations of hepatic metabolism by oral acute and repeated chlorpyrifos administration to mice. Toxicology. 2007; 234: 90–102. [CrossRef] [PubMed] [Google Scholar]
  24. Hsu DZ, Hsu CH, Huang BM, Liu MY. Abamectin effects on aspartate aminotransferase and nitric oxide in rats. Toxicology. 2001; 165: 189–193. [CrossRef] [PubMed] [Google Scholar]
  25. Van der Harst JE, Fermont PCJ, Bilstra AE, Spruijt BM. Access to enriched housing is rewarding to rats as reflected by their anticipatory bahaviour. Animal Behaviour. 2003; 66(3): 493–504. [CrossRef] [Google Scholar]
  26. El-Shenawy NS. Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicol In Vitro. 2010; 24: 1148–1157. [CrossRef] [PubMed] [Google Scholar]
  27. Eissa FI, Zidan NA. Haematological, biochemical and histopathological alterations induced by abamectin and Bacillus thuringiensis in male albino rats. Acta Biol Hung. 2010; 61: 33–44. [CrossRef] [PubMed] [Google Scholar]
  28. Menez C, Mselli-Lakhal L, Foucaud-Vignault M, Balaguer P, Alvinerie M, Lespine A. Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line. Biochem Pharmacol. 2012; 83: 269–278. [Google Scholar]
  29. Prichard R, Ménez C, Lespine A. Moxidectin and the avermectins: Consanguinity but not identity. Int J Parasitology: Drugs Drug Resistance. 2012; 1–20. [Google Scholar]
  30. Laffont CM, Toutain PL, Alvinerie M, Bousquet-Melou A. Intestinal secretion is a major route for parent ivermectin elimination in the rat. Drug Metab Dispos. 2002; 30: 626–630. [CrossRef] [PubMed] [Google Scholar]
  31. Kiki-Mvouaka S, Menez C, Borin C, Lyazrhi F, Foucaud-Vignault M, Dupuy J, Collet X, Alvinerie M, Lespine A. Role of P-glycoprotein in the disposition of macrocyclic lactones: a comparison between ivermectin, eprinomectin, and moxidectin in mice. Drug Metab Dispos. 2010; 38: 573–580. [CrossRef] [PubMed] [Google Scholar]
  32. Dupuy J, Lespine A, Sutra JF, Alvinerie M. The interaction between moxidectin and MDR transporters in primary cultures of rat hepatocytes. J Vet Pharmacol Ther. 2006; 29: 107–111. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]