EDP Sciences logo
Open Access
Ann Toxicol Anal
Volume 24, Numéro 4, 2012
Page(s) 165 - 175
DOI https://doi.org/10.1051/ata/2012022
Publié en ligne 15 février 2013
  1. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part I). Clin Pharmacokinet. 1989; 17(3): 175–199. [CrossRef] [PubMed] [Google Scholar]
  2. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part II). Clin Pharmacokinet. 1989; 17(4): 275–290. [CrossRef] [PubMed] [Google Scholar]
  3. Mather LE. Anatomical-physiological approaches in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2001; 40(10): 707–722. [CrossRef] [PubMed] [Google Scholar]
  4. Wilkinson PK, Rheingold JL. Arterial-venous blood alcohol concentration gradients. J Pharmacokinet Biopharm. 1981; 9(3): 279–307. [CrossRef] [PubMed] [Google Scholar]
  5. Martin E, Moll W, Schmid P, Dettli L. The pharmacokinetics of alcohol in human breath, venous and arterial blood after oral ingestion. Eur J Clin Pharmacol. 1984; 26(5): 619–626. [CrossRef] [PubMed] [Google Scholar]
  6. Jones AW, Lindberg L, Olsson SG. Magnitude and time-course of arterio-venous differences in blood-alcohol concentration in healthy men. Clin Pharmacokinet. 2004; 43(15): 1157–1166. [CrossRef] [PubMed] [Google Scholar]
  7. Jones AW, Norberg A, Hahn RG. Concentration-time profiles of ethanol in arterial and venous blood and end-expired breath during and after intravenous infusion. J Forensic Sci. 1997; 42(6): 1088–1094. [PubMed] [Google Scholar]
  8. Jones AW. Pharmacokinetics of ethanol in saliva: comparison with blood and breath alcohol profiles, subjective feelings of intoxication, and diminished performance. Clin Chem. 1993; 39(9): 1837–1844. [PubMed] [Google Scholar]
  9. Jones AW, Jonsson KA, Jorfeldt L. Differences between capillary and venous blood-alcohol concentrations as a function of time after drinking, with emphasis on sampling variations in left vs. right arm. Clin Chem. 1989; 35(3): 400–404. [PubMed] [Google Scholar]
  10. Juhlin-Dannfelt A. Ethanol effects of substrate utilization by the human brain. Scand J Clin Lab Invest. 1977; 37(5): 443–449. [CrossRef] [PubMed] [Google Scholar]
  11. Lundquist F, Sestoft L, Damgaard SE, Clausen JP, Trap-Jensen J. Utilization of acetate in the human forearm during exercise after ethanol ingestion. J Clin Invest. 1973; 52(12): 3231–3235. [CrossRef] [PubMed] [Google Scholar]
  12. Raeihae N, Maeeniaeae P. The influence of ethanol on the acid-base balance of the blood in man and rat. Scand J Clin Lab Invest. 1964; 16: 267–272. [CrossRef] [PubMed] [Google Scholar]
  13. Forsander OA, Raiha NC. Metabolites produced in the liver during alcohol oxidation. J Biol Chem. 1960; 235: 34–36. [PubMed] [Google Scholar]
  14. Lien D, Mader TJ. Survival from profound alcohol-related lactic acidosis. J Emerg Med. 1999; 17(5): 841–846. [CrossRef] [PubMed] [Google Scholar]
  15. Sarkola T, Iles MR, Kohlenberg-Mueller K, Eriksson CJ. Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole. Alcohol Clin Exp Res. 2002; 26(2): 239–245. [CrossRef] [PubMed] [Google Scholar]
  16. Lundquist F, Tygstrup N, Winkler K, Mellemgaard K, Munck-Petersen S. Ethanol metabolism and production of free acetate in the human liver. J Clin Invest. 1962; 41: 955–961. [CrossRef] [PubMed] [Google Scholar]
  17. Lieber CS. Interference of ethanol in hepatic cellular metabolism. Ann N.Y. Acad Sci. 1975; 252: 24–50. [CrossRef] [Google Scholar]
  18. Chevillard L, Megarbane B, Baud FJ, Risede P, Decleves X, Mager D, Milan N, Ricordel I. Mechanisms of respiratory insufficiency induced by methadone overdose in rats. Addict Biol. 2010; 15(1): 62–80. [CrossRef] [PubMed] [Google Scholar]
  19. Villa AF, Houze P, Monier C, Risede P, Sarhan H, Borron SW, Megarbane B, Garnier R, Baud FJ. Toxic doses of paraoxon alter the respiratory pattern without causing respiratory failure in rats. Toxicology. 2007; 232(1-2): 37–49. [CrossRef] [PubMed] [Google Scholar]
  20. Pirnay SO, Megarbane B, Borron SW, Risede P, Monier C, Ricordel I, Baud FJ. Effects of various combinations of benzodiazepines with buprenorphine on arterial blood gases in rats. Basic Clin Pharmacol Toxicol. 2008; 103(3): 228–239. [CrossRef] [PubMed] [Google Scholar]
  21. Chevillard L, Megarbane B, Risede P, Baud FJ. Characteristics and comparative severity of respiratory response to toxic doses of fentanyl, methadone, morphine, and buprenorphine in rats. Toxicol Lett. 2009; 191(2-3): 327–340. [CrossRef] [PubMed] [Google Scholar]
  22. Duarte T, Martin C, Baud FJ, Laprevote O, Houze P. Follow up studies on the respiratory pattern and total cholinesterase activities in dichlorvos-poisoned rats. Toxicol Lett. 2012; 213(2): 142–150. [CrossRef] [PubMed] [Google Scholar]
  23. Silveri MM, Spear LP. Ontogeny of ethanol elimination and ethanol-induced hypothermia. Alcohol. 2000; 20(1): 45–53. [CrossRef] [PubMed] [Google Scholar]
  24. Huttunen P, Sampi M, Myllyla R. Ethanol-induced hypothermia and thermogenesis of brown adipose tissue in the rat. Alcohol. 1998; 15(4): 315–318. [CrossRef] [PubMed] [Google Scholar]
  25. Ristuccia RC, Spear LP. Autonomic responses to ethanol in adolescent and adult rats: a dose-response analysis. Alcohol. 2008; 42(8): 623–629. [CrossRef] [PubMed] [Google Scholar]
  26. Payne JP, Hill DW, King NW. Observations on the distribution of alcohol in blood, breath, and urine. Br Med J. 1966; 1(5481): 196–202. [CrossRef] [PubMed] [Google Scholar]
  27. Smith ME, Newman HW. The rate of ethanol metabolism in fed and fasting animals. J Biol Chem. 1959; 234(6): 1544–1549. [PubMed] [Google Scholar]
  28. Rofael HZ, Abdel-Rahman MS. The role of ketamine on plasma cocaine pharmacokinetics in rat. Toxicol Lett. 2002; 129(1-2): 167–176. [CrossRef] [PubMed] [Google Scholar]
  29. Document consulté sur le site http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5067085 le 26 juillet 2012. [Google Scholar]
  30. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, VandeVorstenbosch C. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001; 21(1): 15–23. [CrossRef] [PubMed] [Google Scholar]
  31. Document consulté sur le site http://www.cofrac.fr/annexes/sect6/8-2527.pdf le 4 février 2012. [Google Scholar]
  32. Kalant H. Pharmacokinetics of ethanol: absorption, distribution, and elimination. In: Begleiter H, Kissin B (eds.). The pharmacology of alcohol and alcohol dependence. Oxford: Oxford University Press 1996: 15–58. [Google Scholar]
  33. Cunningham JJ, Molnar JA, Meara PA, Bode HH. In vivo total body electrical conductivity following perturbations of body fluid compartments in rats. Metabolism. 1986; 35(6): 572–575. [CrossRef] [PubMed] [Google Scholar]
  34. Jacobsen E. The metabolism of ethyl alcohol. Pharmacol Rev. 1952; 4(2): 107–135. [PubMed] [Google Scholar]
  35. Mezey E. Ethanol metabolism and ethanol-drug interactions. Biochem Pharmacol. 1976; 25(8): 869–875. [CrossRef] [PubMed] [Google Scholar]
  36. Matsumoto H, Fukui Y. Pharmacokinetics of ethanol: a review of the methodology. Addict Biol. 2002; 7(1): 5–14. [CrossRef] [PubMed] [Google Scholar]
  37. Braggins TJ, Crow KE. The effects of high ethanol doses on rates of ethanol oxidation in rats. A reassessment of factors controlling rates of ethanol oxidation in vivo. Eur J Biochem. 1981; 119(3): 633–640. [CrossRef] [PubMed] [Google Scholar]
  38. Page RA, Kitson KE, Hardman MJ. The importance of alcohol dehydrogenase in regulation of ethanol metabolism in rat liver cells. Biochem J. 1991; 278(3): 659–665.Pt [PubMed] [Google Scholar]
  39. Zahlten RN, Jacobson CJ, Neijtek ME. Underestimation of alcohol dehydrogenase as a result of various technical pitfalls of the enzyme assay. Biochem Pharmacol. 1980; 29(13): 1973–1976. [CrossRef] [PubMed] [Google Scholar]
  40. Crabb DW, Yount EA, Harris RA. The metabolic effects of dichloroacetate. Metabolism. 1981; 30(10): 1024–1039. [CrossRef] [PubMed] [Google Scholar]
  41. Sharkawi M. In vivo inhibition of liver alcohol dehydrogenase by ethanol administration. Life Sci. 1984; 35(23): 2353–2357. [CrossRef] [PubMed] [Google Scholar]
  42. Inoue K, Fukunaga M, Kiriyama T, Komura S. Accumulation of acetaldehyde in alcohol-sensitive Japanese: relation to ethanol and acetaldehyde oxidizing capacity. Alcohol Clin Exp Res. 1984; 8(3): 319–322. [CrossRef] [PubMed] [Google Scholar]
  43. Ferko AP, Bobyock E. Physical dependence on ethanol: rate of ethanol clearance from the blood and effect of ethanol on body temperature in rats. Toxicol Appl Pharmacol. 1978; 46(1): 235–248. [CrossRef] [PubMed] [Google Scholar]
  44. Ferko AP, Bobyock E. Rates of ethanol disappearance from blood and hypothermia following acute and prolonged ethanol inhalation. Toxicol Appl Pharmacol. 1979; 50(3): 417–427. [CrossRef] [PubMed] [Google Scholar]
  45. Romm E, Collins AC. Body temperature influences on ethanol elimination rate. Alcohol. 1987; 4(3): 189–198. [CrossRef] [PubMed] [Google Scholar]
  46. Koren G, Barker C, Bohn D, Kent G, McGuigan M, Biggar D. Effect of hypothermia on the pharmacokinetics of ethanol in piglets. Ann Emerg Med. 1989; 18(2): 118–121. [CrossRef] [PubMed] [Google Scholar]
  47. Bejanian M, Finn DA, Syapin PJ, Alkana RL. Body temperature and ethanol pharmacokinetics in temperature-challenged mice. Alcohol. 1990; 7(4): 331–337. [CrossRef] [PubMed] [Google Scholar]
  48. MacGregor DC, Schoenbaum E, Bigelow WG. Effects of hypothermia on disappearance of ethanol from arterial blood. Am J Physiol. 1965; 208: 1016–1020. [PubMed] [Google Scholar]
  49. Larsen JA. The effect of cooling on liver function in cats. Acta Physiol Scand. 1971; 81(2): 197–207. [CrossRef] [PubMed] [Google Scholar]
  50. Krarup N, Larsen JA. The effect of slight hypothermia on liver function as measured by the elimination rate of ethanol, the hepatic uptake and excretion of indocyanine green and bile formation. Acta Physiol Scand. 1972; 84(3): 396–407. [CrossRef] [PubMed] [Google Scholar]
  51. van den Broek MP, Groenendaal F, Egberts AC, Rademaker CM. Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic review of preclinical and clinical studies. Clin Pharmacokinet. 2010; 49(5): 277–294. [CrossRef] [PubMed] [Google Scholar]
  52. Mortensen B, Dale O. Effects of hypothermia on the elimination of ethanol, diazepam and oxazepam in rat liver slice incubations. Acta Anaesthesiol Scand. 1995; 39(2): 199–204. [CrossRef] [PubMed] [Google Scholar]
  53. Cohen RD, Woods HF. Clinical and biochemical aspects of lactic acidosis. Oxford, London, Edinburgh, and Melbourne: Blackwell Scientific Publications, 1976. [Google Scholar]
  54. Forney RB, Harger RN. Toxicology of ethanol. Annu Rev Pharmacol. 1969; 9: 379–392. [CrossRef] [PubMed] [Google Scholar]
  55. Forsander OA, Maenpaa PH, Salaspuro MP. Influence of ethanol on the lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios in rat liver experiments. Acta Chem Scand. 1965; 19(7): 1770–1771. [CrossRef] [PubMed] [Google Scholar]
  56. Forsander OA. Influence of the metabolism of ethanol on the lactate/pyruvate ratio of rat-liver slices. Biochem J. 1966; 98(1): 244–247. [PubMed] [Google Scholar]
  57. Lopez CH, Constantin J, Gimenes D, Suzuki-Kemmelmeier F, Bracht A. Heterogenic response of the liver parenchyma to ethanol studied in the bivascularly perfused rat liver. Mol Cell Biochem. 2004; 258(1-2): 155–162. [CrossRef] [PubMed] [Google Scholar]
  58. Masson S, Desmoulin F, Sciaky M, Cozzone PJ. The effects of ethanol concentration on glycero-3-phosphate accumulation in the perfused rat liver. A reassessment of ethanol-induced inhibition of glycolysis using 31P-NMR spectroscopy and HPLC. Eur J Biochem. 1992; 205(1): 187–194. [CrossRef] [PubMed] [Google Scholar]
  59. Nicholas PC, Kim D, Crews FT, Macdonald JM. 1H NMR-based metabolomic analysis of liver, serum, and brain following ethanol administration in rats. Chem Res Toxicol. 2008; 21(2): 408–420. [CrossRef] [PubMed] [Google Scholar]
  60. Efthivoulou MA, Phillips JW, Berry MN. Abolition of the inhibitory effect of ethanol oxidation on gluconeogenesis from lactate by asparagine or low concentrations of ammonia. Biochim Biophys Acta. 1995; 1244(2-3): 303–310. [CrossRef] [PubMed] [Google Scholar]
  61. Lopez CH, Suzuki-Kemmelmeier F, Constantin J, Bracht A. Zonation of the action of ethanol on gluconeogenesis and ketogenesis studied in the bivascularly perfused rat liver. Chem Biol Interact. 2009; 177(2): 89–95. [CrossRef] [PubMed] [Google Scholar]
  62. Eiser AR. The effects of alcohol on renal function and excretion. Alcohol Clin Exp Res. 1987; 11(2): 127–138. [CrossRef] [PubMed] [Google Scholar]
  63. Kreisberg RA, Owen WC, Siegal AM. Ethanol-induced hyperlacticacidemia: inhibition of lactate utilization. J Clin Invest. 1971; 50(1): 166–174. [CrossRef] [PubMed] [Google Scholar]
  64. Topping DL, Snoswell AM, Storer GB, Fishlock RC, Trimble RP. Dependence on blood acetate concentration of the metabolic effects of ethanol in perfused rat liver. Biochim Biophys Acta. 1984; 800(1): 103–105. [CrossRef] [PubMed] [Google Scholar]
  65. MacDonald L, Kruse JA, Levy DB, Marulendra S, Sweeny PJ. Lactic acidosis and acute ethanol intoxication. Am J Emerg Med. 1994; 12(1): 32–35. [CrossRef] [PubMed] [Google Scholar]
  66. Fulop M, Bock J, Ben-Ezra J, Antony M, Danzig J, Gage JS. Plasma lactate and 3-hydroxybutyrate levels in patients with acute ethanol intoxication. Am J Med. 1986; 80(2): 191–194. [CrossRef] [PubMed] [Google Scholar]
  67. Auzepy P, Boutron HF, Richard C, Riou B. [In France, is acute alcoholic intoxication in adults a metabolic emergency?]. Rev Med Interne. 1985; 6(4): 373–379. [CrossRef] [PubMed] [Google Scholar]
  68. Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001; 130(1): 21–27. [CrossRef] [PubMed] [Google Scholar]
  69. Manchado F de B, Gobatto CA, Voltarelli FA, RostomdeMello MA. Non-exhaustive test for aerobic capacity determination in swimming rats. Appl Physiol Nutr Metab. 2006; 31(6): 731–736. [CrossRef] [PubMed] [Google Scholar]