Open Access
Numéro |
Ann Toxicol Anal
Volume 24, Numéro 3, 2012
|
|
---|---|---|
Page(s) | 119 - 127 | |
DOI | https://doi.org/10.1051/ata/2012013 | |
Publié en ligne | 26 septembre 2012 |
- Evans DAP. N-acetyltransferase. In : Kalow W (editor) Pharmacogenetics of drug metabolism. New York : Pergamon Press, 1992 : 95–178. [Google Scholar]
- Kawamura AK, Graham J, Mushtaq A, Tsiftsoglou SA, Vath GM, Hanna PE, Wagner CR, Sim E. Eukaryotic arylamine N-acetyltransferase investigation of substrate specificity by high-throughput screening. Biochem Pharmacol. 2005; 69(2) : 347–359. [CrossRef] [PubMed] [Google Scholar]
- Nebert DW, Roe AL. Ethnic and genetic differences in metabolism genes and risk of toxicity and cancer. Sci Total Environ. 2001; 274(1–3) : 93–102. [CrossRef] [PubMed] [Google Scholar]
- Boukouvala S, Sim E. Structural analysis of the genes for human arylamine N-acetyltransferases and characterization of alternative transcripts. Basic Clin Pharmacol Toxicol. 2005; 96(5) : 343–351. [CrossRef] [PubMed] [Google Scholar]
- Grant DM, Blum M, Beer M, Myer UA. Monomorphic and polymorphic human arylamine N-acetyltransferases : a comparison of liver isozymes and expressed products of two cloned genes. Mol Pharmacol. 1991; 39(2) : 184–191. [PubMed] [Google Scholar]
- Hickman D, Pope J, Patil SD, Fakis G, Smelt V, Stanley LA, Payton M, Unadkat JD, Sim E. Expression of arylamine N-acetyltransferase in human intestine. Gut. 1998; 42(3) : 402–409. [CrossRef] [PubMed] [Google Scholar]
- Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD, van der Walt BJ, Donald PR, van Jaarsveld PP. Trimodality of isoniazid elimination : phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med. 1997; 155(5) : 1717–1722. [CrossRef] [PubMed] [Google Scholar]
- Smith CA, Wadelius M, Gough AC, Harrison DJ, Wolf CR, Rane A. A simplified assay for the arylamine N-acetyltransferase 2 polymorphism validated by phenotyping with isoniazid. J Med Genet. 1997; 34(9) : 758–760. [CrossRef] [PubMed] [Google Scholar]
- Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A, Yu VL, Grewal R. Human acetyltransferase polymorphisms. Mutat Res. 1997; 376(1-2) : 61–70. [CrossRef] [PubMed] [Google Scholar]
- Cascorbi I, Brockmöller J, Mrozikiewicz PM, Müller A, Roots I. Arylamine N-acetyltransferase activity in man. Drug Metab Rev. 1999; 31(2) : 489–502. [CrossRef] [PubMed] [Google Scholar]
- Hein DW. Molecular genetics and function of NAT1 and NAT2 : role in aromatic amine metabolism and carcinogenesis. Mutat Res. 2002; 506-507 : 65–77. [CrossRef] [PubMed] [Google Scholar]
- Evans DAP. Survey of the human acetylator polymorphism in spontaneous disorders. J Med Genet. 1984; 21 : 243–253. [CrossRef] [PubMed] [Google Scholar]
- Clark DW. Genetically determined variability in acetylation and oxidation. Therapeutic implications. Drugs. 1985; 29 : 342–375. [Google Scholar]
- Evans DAP. N-acetyltransferase. In : Genetic Factors in Drug Therapy. Cambridge University Press : Cambridge, 1993 : 211–302. [Google Scholar]
- Weber WW. Pharmacogenetics. Oxford Monographs on Medical Genetics. Oxford University Press : New York, 1997, Vol 15. [Google Scholar]
- Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Niangju NA, Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev. 2000; 9 : 29–42. [Google Scholar]
- Agundez JAG, Golka K, Martınez C, Selinski S, Blaszkewicz M, Garcia-Martin E. Unraveling ambiguous NAT2 genotyping data. Clin Chem. 2008; 54(8) : 1390–1394. [CrossRef] [PubMed] [Google Scholar]
- Kato R. Metabolic activation of mutagenic heterocyclic aromatic amines from protein pyrolysates. Crit Rev Toxicol. 1986; 16(4) : 307–348. [CrossRef] [PubMed] [Google Scholar]
- Hein DW. Acetylator genotype and arylamine-induced carcinogenesis. Biochim Biophys Acta. 1988; 948(1) : 37–66. [PubMed] [Google Scholar]
- Minchin RF, Reeves PT, Teitel CH, McManus ME, Mojarrabi B, Ilett KF, Kadlubar FF. N- and O-acetylation of aromatic and heterocyclic amine carcinogens by human monomorphic and polymorphic acetyltransferases expressed in COS-1 cells. Biochem Biophys Res Commun. 1992; 185(3) : 839–844. [CrossRef] [PubMed] [Google Scholar]
- Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993; 14 : 1633–1638. [CrossRef] [PubMed] [Google Scholar]
- Zenser TV, Lakshmi VM, Rustan TD, Doll MA, Deitz AC, Davis BB, Hein DW. Human N-acetylation of benzidine : role of NAT1 and NAT2. Cancer Res. 1996; 56 : 3941–3947. [PubMed] [Google Scholar]
- Grant DM, Tang BK, Kalow W. A simple test for acetylator phenotype using caffeine. 1984. Br J Clin Pharmacol. 2004; 58(7) : S788–S793; discussion S794–S795. [CrossRef] [PubMed] [Google Scholar]
- Sabbagh N, Delaporte E, Marez D, Lo-Guidice J, Piette F, Broly F. NAT2 genotyping and efficacy of sulfasalazine in patients with chronic discoid lupus erythematosus. Pharmacogenetics. 1997; 7(2) : 131–135. [CrossRef] [PubMed] [Google Scholar]
- Spielberg SP. N-acetyltransferases : pharmacogenetics and clinical consequences of polymorphic drug metabolism. J Pharmacokinet Biopharm. 1996; 24 : 509–519. [CrossRef] [PubMed] [Google Scholar]
- Kilbane AJ, Silbart LK, Manis M, Beitins IZ, Weber WW. Human N-acetylation genotype determination with urinary caffeine metabolites. Clin Pharmacol Ther. 1990; 47 : 470–477. [CrossRef] [PubMed] [Google Scholar]
- Evans DAP. N-acetyltransferase. Pharmacol Ther. 1989; 42 : 157–234. [CrossRef] [PubMed] [Google Scholar]
- Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF. Determination of CYP1A2 and NAT 2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992; 2(3) : 116–127. [CrossRef] [PubMed] [Google Scholar]
- Hildebrand M, Seifert W. Determination of acetylator phenotype in Caucasians with caffeine. Eur J Clin Pharmacol. 1989; 37 : 525–526. [CrossRef] [PubMed] [Google Scholar]
- Tang BK, Kadar D, Qian L, Iriah J, Yip J, Kalow W. Caffeine as a metabolic probe : Validation of its use for acetylator phenotyping. Clin Pharmacol Ther. 1991; 49(6) : 648–657. [CrossRef] [PubMed] [Google Scholar]
- Grant DM, Tang BK, Kalow W. A simple test for acetylator phenotype using caffeine. Br J Clin Pharmacol. 1984; 17 : 459–464. [CrossRef] [PubMed] [Google Scholar]
- Tang BK, Zubovits T andKalow W. Determination of acetylated caffeine metabolites by high-performance exclusion chromatography. J Chromatogr. 1986; 375 : 170–173. [CrossRef] [Google Scholar]
- Grant DM, Tang BK, Kalow W. Variability in caffeine metabolism. Clin Pharmacol Ther. 1983; 33 : 591–601. [CrossRef] [PubMed] [Google Scholar]
- Miners JO, Birkett JD. The use of caffeine as a metabolic probe for human drug metabolizing enzymes. Gen Pharmacol. 1996; 27(2) : 245–249. [CrossRef] [PubMed] [Google Scholar]
- Pariente-Khayat A, Rey E, Gendrel D, Vauzelle-Kervrotdan F, Crémier O, Athis P, Badoual J, Olive G, Pons G. Isoniazid acetylation metabolic ratio during maturation in children. Clin Pharmacol Ther. 1997; 62(4) : 377–384. [CrossRef] [PubMed] [Google Scholar]
- Kaufmann GR, Wenk M, Taeschner W, Peterli B, Gyr K, Meyer UA, Haefeli WE. N-acetyltransferase 2 polymorphism in patients infected with human immunodeficiency virus. Clin Pharmacol Ther. 1996; 60 : 62–67. [CrossRef] [PubMed] [Google Scholar]
- Agence nationale de la statistique et de la démographie du Sénégal. Juin 2008. Résultats définitifs du troisième recensement général de la population et de l’habitat, 2002 : 163 p. [Google Scholar]
- Signorello LB, Nordmark A, Granath F, Blot WJ, McLaughlin JK, Anneren G, Lundgren S, Ekbom A, Rane A, Cnattingius S. Caffeine metabolism and the risk of spontaneous abortion of normal karyotype fetuses. Obstet Gynecol. 2001; 98(6) : 1059–1066. [CrossRef] [PubMed] [Google Scholar]
- Cnattingius S, Signorello LB, Annerén G, Clausson B, Ekbom A, Ljunger E, Blot WJ, McLaughlin JK, Petersson G, Rane A, Granath F. Caffeine intake and the risk of first-trimester spontaneous abortion. N Engl J Med. 2000; 43(25) : 1839–1845. [CrossRef] [Google Scholar]
- Fernandes O, Sabharwal M, Smiley T, Pastuszak A, Koren G, Einarson T. Moderate to heavy caffeine consumption during pregnancy and relationship to spontaneous abortion and abnormal fetal growth : a meta-analysis. Reprod Toxicol. 1998; 12(4) : 435–444. [CrossRef] [PubMed] [Google Scholar]
- Evans DAP, Manley KA, Mc Kusick VA. Genetic control of isoniazid metabolism in man. Br Med J. 1960; 13 : 485–491. [CrossRef] [Google Scholar]
- Farah F, Taylor W, Rawlins MD, James O. Hepatic drug acetylation and oxidation : effects of aging in man. Br Med J. 1977; 2 : 155–156. [CrossRef] [PubMed] [Google Scholar]
- Philip PA, Gayed SL, Rogers HJ, Crome P. Influence of age, sex and body weight on the dapsone acetylation phenotype. Br J Clin Pharmacol. 1987; 23 : 709–713. [CrossRef] [PubMed] [Google Scholar]
- Evans DA, White TA. Human acetylation polymorphism. J Lab Clin Med. 1964; 63 : 394–403. [PubMed] [Google Scholar]
- Gelber R, Peters J, Gordon G, Glazko A, Levy L. The polymorphic acetylation of dapsone in man. Clin Pharmacol Ther. 1971; 12 : 225–238. [PubMed] [Google Scholar]
- Schroder H. Simplified method for determining acetylator phenotype. Br Med J. 1972; 3 : 506–507. [CrossRef] [PubMed] [Google Scholar]
- Reidenberg MM, Drayer DE, Levy M, Warner H. Polymorphic acetylation procainamide in man. Clin Pharmacol Ther. 1975; 17 : 722–730. [PubMed] [Google Scholar]
- Rao KVN, Mitchison DA, Nair NGK, Prema K, Tripaty SP. Sulphadimidine acetylation test for classification of patients as slow and rapid inactivators of isoniazid. Br Med J. 1970; 3 : 495–497. [CrossRef] [PubMed] [Google Scholar]
- Rasmussen BB, Kim B. Determination of urinary metabolites of caffeine for the assessment of cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activity in humans. Ther Drug Monit. 1996; 18(3) : 254–262. [CrossRef] [PubMed] [Google Scholar]
- Allorge D, Loriot MA. La pharmacogénétique ou la promesse d’une médecine personnalisée : variations du métabolisme et du transport des médicaments. Ann Biol Clin. 2004; 62(5) : 499–511. [Google Scholar]
- Bakayev VV, Mohammadi F, Bahadori M, Sheikholslami M, Javeri A, Masjedi MR, Velayati AA. Arylamine N-acetyltransferase 2 slow acetylator polymorphisms in unrelated Iranian individuals. Eur J Clin Pharmacol. 2004; 60 : 467–471. [CrossRef] [PubMed] [Google Scholar]
- Yu MC, Skipper PL, Taghizadeh K, Tannenbaum SR, Chan KK, Henderson BE, Ross RK. Acetylator phenotype, aminobiphenyl-hemoglobin adduct levels, and bladder cancer risk in white, black, and Asian men in Los Angeles, California. J Natl Cancer Inst. 1994; 86 : 712–716. [CrossRef] [PubMed] [Google Scholar]
- Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol. 1997; 37 : 269–296. [CrossRef] [PubMed] [Google Scholar]
- Gross M, Kruisselbrink T, Anderson K, Lang N, McGovern P, Delongchamp R, Kadlubar F. Distribution and concordance of N-acetyltransferase genotype and phenotype in an American population. Cancer Epidemiol Biomarkers Prev. 1999; 8 : 683–692. [PubMed] [Google Scholar]
- Braz Vieira da Silva Fontes Z, Vincent-Viry M, Gueguen R,Galteau MM, Siest G. Acetylation phenotypes and biological variation in a french Caucasian population. Eur J Clin Chem Clin Biochem. 1993; 31(2) : 59–68. [PubMed] [Google Scholar]
- O’Neil WM, Drobitch RK, MacArthur RD, Farrough MJ, Doll MA, Fretland J, Hein DW, Crane LR, Svensson CK. Acetylator phenotype and genotype in patients infected with HIV : discordance between methods for phenotype determination and genotype. Pharmacogenetics. 2000; 10 : 171–182. [CrossRef] [PubMed] [Google Scholar]
- Khelil M, Tayebi B, Djerdjouri B. Polymorphisme d’acétylation de la caféine chez une population algérienne. J Soc Alger Chim. 2007; 17(1) : 65–76. [Google Scholar]
- Nhachi CFB. Polymorphic acetylation of sulphamethazine in a Zimbabwe population. J Med Genet. 1988; 25 : 29–31. [CrossRef] [PubMed] [Google Scholar]
- Hashem N, Khalifa S, Nour A. The frequency of isoniazid acetylase enzyme deficiency among Egyptians. Am J Phys Anthrop. 1969; 31 : 97–102. [CrossRef] [Google Scholar]
- Deguchi T, Mashimo M, Suzuki T. Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem. 1990; 265(22) : 12757–12760. [PubMed] [Google Scholar]
- Abzalov RA, Nigmatullina RR, Khairullina GN, Garmonov SY, Shakirova LS, Evgenev MI. Effect of physical training on Sulphamethazine acetylation rate. Bull Exp Biol Med. 2000; 130(12) :1141–1143. [PubMed] [Google Scholar]
- Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES. Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence : A Worldwide Population Survey. PLoS ONE. 2011; 6(4) : 10. [CrossRef] [Google Scholar]
- Muscat JE, Pittman B, Kleinman W, Lazarus P, Stellman SD, Richie Jr JP. Comparison of CYP1A2 and NAT2 Phenotypes between Black and White Smokers. Biochem Pharmacol. 2008; 76(7) : 929–937. [CrossRef] [PubMed] [Google Scholar]
- Dandara C, Masimirembwaa CM, Magimbab A, Kaayab S, Sayib J, Sommersb DK, Snymanc JR, Haslera JA. Arylamine N-acetyltransferase (NAT2) genotypes in Africans : the identification of a new allele with nucleotide changes 481C>T and 590G>A. Pharmacogenetics. 2003; 13 : 55–58. [CrossRef] [PubMed] [Google Scholar]
- Loriot MA, Beaune P. La pharmacogénétique : le lien entre gènes et réponse aux médicaments. Méd Sci. 2004; 20 : 634–636. [Google Scholar]
- Guengerich FP. Metabolic activation of carcinogens. Pharmacol Ther. 1992; 54 : 17–61. [CrossRef] [PubMed] [Google Scholar]
- Lauterburg BH, Smith CV, Todd EL, Mitchell JR. Oxidation of hydrazine metabolites formed from isoniazid. Clin Pharmacol Ther. 1985; 38 : 566–571. [CrossRef] [PubMed] [Google Scholar]
- Noda A, Hsu KY, Noda H, Yamamoto Y, Kurozumi T. Is isoniazid-hepatotoxicity induced by the metabolite, hydrazine? J Uoeh. 1983; 5 : 183–190. [Google Scholar]