EDP Sciences logo
Open Access
Ann Toxicol Anal
Volume 23, Numéro 3, 2011
Page(s) 139 - 145
DOI https://doi.org/10.1051/ata/2011123
Publié en ligne 13 octobre 2011
  1. Barry PSI. A comparison of concentrations of lead in human tissues. Br J Ind Med. 1975; 32 : 119–139. [PubMed] [Google Scholar]
  2. Haæ E, Krechniak J. Lead levels in bone and hair of rats treated with lead acetate. Biol Trace Elem Res. 1996, 52 : 293–301. [CrossRef] [PubMed] [Google Scholar]
  3. Taylor A. Metabolism and toxicology of lead. Rev Environ Health. 1986; 6 : 1–83. [CrossRef] [PubMed] [Google Scholar]
  4. Winship KA. Toxicity of lead : a review. Adv Drug React. 1989; 8 : 117–152. [Google Scholar]
  5. Quaterman I,Morrison IN. The influence of high dietary calcium and phosphate on lead uptake and release. Environ Res. 1978; 17 : 60–67. [CrossRef] [PubMed] [Google Scholar]
  6. Smith CM,DeLuca HF,Tanaka Y,Mahaffey KR. Effects of lead ingestion on functions of vitamin D and its metabolites. J Nutr. 1981; 118 : 824–828. [Google Scholar]
  7. Mykkanen HM,Fullmer CS,Wasserman RM. Effect of phosphate on the intestinal absorption of lead (203Pb) in chicks. J Nutr. 1984; 114 : 68–74. [PubMed] [Google Scholar]
  8. Ragan HE. Effects of iron deficiency on the absorption and distribution of lead and cadmium in rats. J Lab Clin Med. 1977; 90 : 700–706. [PubMed] [Google Scholar]
  9. Watson WS,Hume R,Moore MR. Oral absorption of lead and iron. Lancet. 1980; 2 : 236–237. [CrossRef] [PubMed] [Google Scholar]
  10. Garnier R, Poupon J. Biomarqueurs de l’exposition aux métaux. Congrès SFT – Biomarqueurs de Toxicité. Paris : Société Française de Toxicologie, 2004. [Google Scholar]
  11. Rendall REC,Baily P,Soskolne CL. The effect of particle size on absorption of inhaled lead. Am Ind Hyg Ass J. 1975; 36 : 207–213. [CrossRef] [Google Scholar]
  12. Kaminsky P,Klein M,Duc M. Physiopathologie de l’intoxication par le plomb inorganique. Rev Med Interne. 1993; 14 : 163–170. [CrossRef] [PubMed] [Google Scholar]
  13. Lauwerys R,Buchet IP,Roels H,Hubermont G. Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. Comparison of the frequency distribution of the biological indices in maternal and umbilical cord blood. Environ Res. 1978; 15 : 278–289. [Google Scholar]
  14. Bismuth C, Baud F, Conso F, Dally S, Fréjaville J, Garnier R et al. Toxicologie clinique. Paris : Flammarion Médecine Sciences, 2000. [Google Scholar]
  15. Rabinowitz M,Wetherhill G,Kopple I. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1978; 58 : 260–270. [CrossRef] [Google Scholar]
  16. Garnier R. Toxicité du plomb et de ses dérivés. EMC-Toxicol Pathol. 2005; 2 : 67–88. [CrossRef] [Google Scholar]
  17. Viala A, Botta A. Toxicologie. 2e Édition. Paris : Édition Lavoisier, 2005. [Google Scholar]
  18. Habig WH,Pabst MJ,Jacoby WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249 : 7130–7139. [Google Scholar]
  19. Jacoby WB. The glutathione S-transferase : A group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol. 1978; 46 : 383–414. [PubMed] [Google Scholar]
  20. Bellomo G,Mirabelli F,Di Monte D,Richelmi P,Thor H. Orrenius C et al. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. Biochem Pharmacol. 1987; 36(8) : 1313–1320. [CrossRef] [PubMed] [Google Scholar]
  21. Di Ilio C, Del Boccio G,Casaccia R,Aceto A,Di G,Fedirici Giacomo F. Selenium level and glutathione-dependent enzyme activities in normal and neoplastic human lung tissues. Carcinogenesis. 1987; 8 : 281–284. [CrossRef] [PubMed] [Google Scholar]
  22. Schirmer RH, Krauth-Siegel RL, Shulz GE. Glutathione reductase. In : Dolphin D, Poulson R, Avramovic O (coordinators). Glutathione : chemical, biochemical and medical aspects (part A). New York : John Wiley and Sons, 1989 : 553–596. [Google Scholar]
  23. Zhu BT,Liehr JG. Quercetin increases the severity of estradiol induced tumorigenesis in hamster kidney. Toxicol Appl Pharmacol. 1994; 125 : 149–158. [CrossRef] [PubMed] [Google Scholar]
  24. Krohne EG,Schirmer RH,Untucht-Grau R. Glutathione reductase from human erythrocytes, isolation of the enzyme and sequence analysis of the redox-active peptide. Eur J Biochem. 1971; 80 : 65–71. [CrossRef] [Google Scholar]
  25. Aouacheri W,Saka S,Djafer R,Lefranc G. Effet protecteur du diclofénac contre le stress oxydatif induit par la toxicité du paracétamol chez les rats. Ann Biol Clin. 2009; 67(6) : 619–627. [Google Scholar]
  26. Weckbercker G,Cory JG. Ribonucleotide reductase activity and growth of glutathione-depended mouse leukaemia L 1210 cells in vitro. Cancer Lett. 1988; 40 : 257–264. [CrossRef] [PubMed] [Google Scholar]
  27. Esterbauer H,Gebicki J,Puhl H,Jungens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992; 13 : 341–390. [Google Scholar]
  28. Flohe L,Gunzler WA. Analyse of glutathione peroxidise. Methods Enzymol. 1984; 105 : 114–121. [CrossRef] [PubMed] [Google Scholar]
  29. Horn HD. Glutathione reductase. In : Bergmayer H (coordinateur). Methods of enzymatic analysis. New York : Academic Press, 1965 : 875–879. [Google Scholar]
  30. Ramirez-cervante B, Embree JW,Hine CH,Nelson KW,Varner MO,Putnam RD. Health assessment of employers with different body burden of lead. J Med Occup. 1978; 20(8) : 610–617. [CrossRef] [Google Scholar]
  31. Bergmeyer H. Dietary nitrate in man : friend or foe? Clin Chim Acta. 1980; 105 : 147–152. [CrossRef] [Google Scholar]
  32. Hammond PB, Lerner SI, Gartside P.S, Hanenson IB,Roda SB,Foulkes EC et al. The relationship of biological indices of lead exposure to the health status of workers in a secondary lead smelter. J Occup Med. 1980; 22(7) : 475–484. [PubMed] [Google Scholar]
  33. Fowler BA, Du Val G. Effects of lead on the kidney : Roles of high-affinity lead binding proteins. Environ Health Perspect. 1991; 91 : 77–80. [CrossRef] [PubMed] [Google Scholar]
  34. Thylambal R,Saroja PM. Therapeutic efficacy of lipoic acid in combination with dimercaptosuccinic acid against lead-induced renal tubular defects and on isolated brush-border enzyme activities. Chem Biol. 2004; 147 : 259–271. [Google Scholar]
  35. Bonsignore D,Calissano P,Cartasegna C. Un senylice metado per la determinazione della α-amino-levulinicodeidratasi nel sangue : comportamento dell’ertzima nell’intossicazione saturmina. Med Lavoro. 1965; 56 : 199–205. [Google Scholar]
  36. Berrahal AA,Nehdi A,Hajjaji N,Gharbi N,El-Fazâa S. Antioxidant enzymes activities and bilirubin level in adult rat treated with lead. C R Biol. 2007; 330 : 581–588. [CrossRef] [PubMed] [Google Scholar]
  37. Saxena G,Flora SJS. Lead-induced oxidative stress and hematological alterations and their response to combined administration of calcium disodium EDTA with a thiol chelator in rats. J Biochem Mol Toxicol. 2004; 18(4) : 221–233. [CrossRef] [PubMed] [Google Scholar]
  38. Gurer H,Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biol Med. 2000; 29(10) : 927–945. [CrossRef] [Google Scholar]
  39. Upadhyay AK,Mathur R,Bhadauria M,Nirala SK. Therapeutic influence of zinc and ascorbic acid against lead induced biochemical alterations. Thérapie. 2009; 64(6) : 383–388. [CrossRef] [EDP Sciences] [Google Scholar]
  40. Mestek O,Deyl Z,Miksik I,Novatna J,Pfeifer I,Herget J. Accumulation of lead in tissues after its administration in drinking water laboratory rats. Physiol Res. 1998; 47 : 197–202. [PubMed] [Google Scholar]
  41. Zhu BT,Liehr JG. Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicol Appl Pharmacol. 1994; 125 : 149–158. [CrossRef] [PubMed] [Google Scholar]
  42. Sies H, Brigelius R, Akarboom TPM. Intrahepatic glutathione status. In : Larsson A (coordinator). Functions of glutathione : biochemical, physiological, toxicological and chemical aspects. New York : Raven Press, 1983 : 51–65. [Google Scholar]